<tt id="aqyv5"><noscript id="aqyv5"></noscript></tt>
      <rp id="aqyv5"><menuitem id="aqyv5"><strike id="aqyv5"></strike></menuitem></rp>
      <cite id="aqyv5"><noscript id="aqyv5"><label id="aqyv5"></label></noscript></cite>
      <b id="aqyv5"><address id="aqyv5"><del id="aqyv5"></del></address></b><rt id="aqyv5"><optgroup id="aqyv5"></optgroup></rt><tt id="aqyv5"><span id="aqyv5"></span></tt>

    1. <cite id="aqyv5"><form id="aqyv5"></form></cite>

        <tt id="aqyv5"><span id="aqyv5"><var id="aqyv5"></var></span></tt>
              <ruby id="aqyv5"><optgroup id="aqyv5"></optgroup></ruby>

              <tt id="aqyv5"></tt>
              <rp id="aqyv5"><meter id="aqyv5"><p id="aqyv5"></p></meter></rp>

              Current advances in pathogen-plant interaction between Verticillium dahliae and cotton provide new insight in the disease management

              DATE:28 September 2021        SOURCE:Journal of Cotton Research

              Abstract

              Verticillium wilt is the second serious vascular wilt caused by the phytopathogenic fungus Verticillium dahliae Kleb. It has distributed worldwide, causing serious yield losses and fiber quality reduction in cotton production. The pathogen has developed different mechanisms like the production of cell wall degrading enzymes, activation of virulence genes and protein effectors to succeed in its infection. Cotton plant has also evolved multiple mechanisms in response to the fungus infection, including a strong production of lignin and callose deposition to strengthen the cell wall, burst of reactive oxygen species, accumulation of defene hormones, expression of defense-related genes, and target-directed strategies like cross-kingdom RNAi for specific virulent gene silencing. This review summarizes the recent progress made over the past two decades in understanding the interactions between cotton plant and the pathogen Verticillium dahliae during the infection process. The review also discusses the achievements in the control practices of cotton verticillium wilt in recent years, including cultivation practices, biological control, and molecular breeding strategies. These studies reveal that effective management strategies are needed to control the disease, while cultural practices and biological control approaches show promising results in the future. Furthermore, the biological control approaches developed in recent years, including antagonistic fungi, endophytic bacteria, and host induced gene silencing strategies provide efficient choices for integrated disease management.


              Copyright @ 2019 China Association of Agricultural Science Societies
              摇钱树官网